Climate change impacts on growth and carbon balance of forests in Central Europe
نویسندگان
چکیده
We analysed climate change impacts on the growth and natural mortality of forest tree species and forest carbon (C) balance along an elevation gradient extending from the Pannonian lowland to the West Carpathian Mountains (Central Europe). Norway spruce Picea abies, European beech Fagus sylvatica, and oak Quercus sp. were investigated for 2 future time periods: 2021–2050 and 2071–2100. The period 1961–1990 was used as reference. Forest growth simulations were based on the SIBYLA tree growth simulator (an empirical model), and C cycle-related simulations were performed using BIOME-BGC (a process-based biogeochemical model). Growth simulations indicated that climate change will substantially affect the growth of spruce and beech, but not of oak, in Central Europe. Growth of spruce and beech in their upper distribution ranges was projected to improve, while drought-induced production decline was projected at the species’ receding edges. Beech was the only species projected to decline critically at lower elevations. C cycle simulations performed for the zone of ecological optima of the 3 tree species indicated that these forests are likely to remain net carbon dioxide sinks in the future, although the magnitude of their sequestration capacity will differ. Increasing nitrogen deposition and atmospheric carbon dioxide concentration were projected to greatly affect the forest C cycle. A multi-model assessment based on SIBYLA and BIOME-BGC simulations performed for the zone of ecological optima suggested that oak production will either remain the same as in the reference period or will increase. Future production of beech seems uncertain and might decline, while spruce production is likely to increase. The results also confirmed the value of multi-model approaches for assessing future forest development under climate change.
منابع مشابه
Revaluing unmanaged forests for climate change mitigation
UNLABELLED BACKGROUND Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurem...
متن کاملClimate change impacts, adaptive capacity, and vulnerability of European forest ecosystems
This study compiles and summarizes the existing knowledge about observed and projected impacts of climate change on forests in Europe. Forests will have to adapt not only to changes in mean climate variables but also to increased variability with greater risk of extremeweather events, such as prolonged drought, storms and floods. Sensitivity, potential impacts, adaptive capacity, and vulnerabil...
متن کاملGuidelines for Sampling Aboveground Biomass and Carbon in Mature Central Hardwood Forests
—As impacts of climate change expand, determining accurate measures of forest biomass and associated carbon storage in forests is critical. We present sampling guidance for 12 combinations of percent error, plot size, and alpha levels by disturbance regime to help determine the optimal size of plots to estimate aboveground biomass and carbon in an old-growth Central Hardwood forest. The analyse...
متن کاملInvestigation on Climate Change in Meteorological Stations of Guilan Province and its Impacts on Water Balance
Climate has always been changing during the lifetime of the earth, and has appeared in the form of the ice age, hurricanes, severe and sudden temperature changes, precipitation and other climatic elements, and has dramatically influenced the environment, and in some cases has caused severe changes and even destructions. Some of the most important aspects of climate changes can be found in preci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011